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ABSTRACT

In this Report, we explore the theory of the superfluid without the
London constraint. For brevity, we call this theory BSH theory after

its original promulgators. We note its similarity to and differences from

the London theory. In particular, we examine the BSH theory as it

applies to a hollow cylinder, at rest and rotating, and with and without

an applied field.

I. INTRODUCTION

In this Report, we explore the theory of the super-
fluid without the London constraint. For brevity, we
call this theory BSH theory after its original promulga-
tors, Becker, Sauter, and Heller (Ref. 1). We note its
similarity to and differences from the London theory.
In particular, we examine the BSH theory as it applies
to a hollow cylinder, at rest and rotating, and with
and without an applied field.

The London equations as constitutive equations for
superelectrons are derivable with the aid of the equa-
tions of motion of an inviscid, incompressible, charged
fluid (Ref. 2). The equations of motion show that if
London’s first equation,

VXvs—i—iB:O
me

holds at any instant, it holds thereafter; they also
serve to yield London’s second equation once the first
equation is assumed.

In terms of the general solutions of the equations
of motion, however, London’s first equation may be
regarded simply as a constraint. Perhaps the easiest
way to see this is to notice that the equations of mo-
tion require (see Section II, and Ref. 3) that at a point
moving with the fluid

VX v+ ——B=2Q = const (1)
me

Since V X v is twice the local angular velocity, we can
write this as Larmor’s theorem (Ref. 3):

e

Aw + S mo

AB =0 @)

where the deltas refer to differences at two successive
moments. The London constraint now amounts to the
dropping of the deltas. This step can be justified by
the uniqueness of the superconducting ground state.
However, were the superconducting ground state de-
generate,* the deltas would have to remain. The fluid,
although superconducting, would then fail to display a
Meissner effect. Qualitatively, such a superconductor
would behave much the same as a superconductor of the
second kind in a field greater than its first critical field.

*This would be the case if, for example, the Cooper pairs of the
superconducting ground state could exist in angular momentum
states of I = 1 or I = 2 that were degenerate in energy with the
1 = 0 state. Such Cooper pair states have been examined by, for
example, S. V. Vonsovskii and M. S. Svirskii as presented in “Super-
conductivity of an Electron System with Singlet or Triplet Pairs,”
Soviet Physics, JETP, Vol. 19, p. 1095, 1964, and references given
there.
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Il. THE EQUATIONS OF BSH THEORY

The equation of motion for an inviscid and incompres-
sible charged fluid of electrons (charge e, mass m, velocity
field v, pressure p, number density p,) is

ma——vaVXv+ Vv-:eEleVp

ev
= =Vp+ T XB

(3)

When E and B are expressed in terms of the potentials
A and ¢, Eq. (3) becomes

’\ ¢
v+ LAY—vxUX({mv+EA
ct me c (4)

—V<—+e¢+ >
Po

By taking the curl of this equation, we obtain (Ref. 2)
i<V><v+iB>:v><v><<V><v+—‘3—B>
ot mc me

(3)

Since
V-(V ><v+iB> =0
mce

we can deduce (Ref. 4) Eq. (1).

We can also deduce from Eq. (4) that

§6<mv + -‘Z-A) Adr (6)

is conserved as long as the contour is a closed streamline.
This theorem is a lot weaker than is the corresponding
theorem of London’s theory — the conservation of the
fluxoid, as we now show.

If the contour encloses a hole, we can write this as

> A
/ (mv + £ A> «Ndr + 2?5 Q- ndo
hole ¢ streamline

minus hole

The first integral is the fluxoid, e/c¢ @, associated with the
hole, and it is the same as in London theory. The second
integral, a surface integral, is absent in London theory.
In BSH theory, then, we no longer have conservation of
the fluxoid. Instead, we have the following theorem: The
rate of change of a fluxoid associated with a hole is given
by the negative rate of change of the flux 2 g Q - ndo
enclosed by any streamline encircling the hole. Of course,
this flux is defined only in the superconductor. While in
general, the fluxoid is not conserved in BSH theory, it is
conserved when the superelectron velocity field is suffi-
ciently symmetrical, as we now show.

lll. THE HOLLOW CYLINDER

In this discussion, we examine the fluxoid theorem (6)
as it applies to the hollow cylinder. We assume that for
the infinitely long hollow cylinder, the streamlines are
always cylindrically symmetric, which here means that
the velocity field and magnetic field depend solely on the
radial coordinate . Thc velocity field lies along the
tangential unit vector &, and V7 X v and B are along Z.
We then can write Eq. (1) as

m 9 1

50 B =) =~

p O oo @

oo

where u is as yet undetermined. In fact, from (6) we
have that

2 p
(I)(P) = 227rmpU + —Z?—/ pB(Ip + B;ﬂ'pf (8)
pi

is conserved (p; is the inner radius of the cylinder, B; is
the field in the bore). However, unlike the fluxoid of
London’s theory, this quantity is a function of p. From
comparison of Eq. (7) with Eq. (8), it follows that

D(p") — B(p) = 2 [p'u (") — pe(p)] 9)

The quantity u, which is zero in London theory, is the
distinguishing characteristic of BSH theory. Evidently,
it is another quantity determined when the cylinder be-
comes superconducting, just as is the constant &(p;).
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IV. THE FREE ENERGY

Just as in the London theory, we determined & at the
time of transition by finding the value of & which made
the free energy a minimum, we now determine both u
and ®(p;) in BSH theory in the same way.

The varjation of the free energy of a superconductor

having a rigid lattice and rotating at a constant angular
velocity in a uniform magnetic field is given by (Ref. 5)

8/ {m_ng(vs — v+ %} dr
sup ™ (10)

—55 fesA X Bda+s/ B &
surf holes 8”

where v; is the velocity field of the lattice. We can write
(10) as

/ Po (Vs
sup

— ;)8 <mvs +< A> dr
‘ (1)

1 ) * Sudr

= Z ]('ll[ Dyt +m Pu(vs -V

c cuts sup

The sum stems from the longitudinal part of v, — v; (see
Ref. 5) and the integral from the transverse part. We now
see that in BSH theory, the presence of the integral
shows that the minimum free energy is achieved when
= (—no current anywhere in the superconductor.
In London theory, the integral is absent. The minimum
is therefore given when the average current J.,., passing
through a cut in a multiply connected superconductor,
vanishes. The London theory further requires that in a
simply connected superconductor, rotating or stationary,
in a fixed field, there must in general be net currents
present if the state is an equilibrium state. In BSH theory
there is no such requirement. This clearly shows the
effect of setting u = 0 (the London constraint). We now
apply what we have just deduced from the general ex-
pression (10) to the determination of the fields associated
with a hollow cylinder.

Vg — V;

Since now we see that v, = v, at the time of transition,
we can write

VU Xv,+ =B =YX+ - (B),
mce m

which holds for all subsequent times, as long as the
cylinder remains superconducting. (The subscript zero
on a quantity indicates its value at the time of transi-
tion.) Furthermore, in the holes of a superconductor, the
field is always B,, since B penetrates a superconductor
completely both before and after the transition. We
therefore obtain for the fluxoid of the cylinder

9§<mv + 2 A> Ady = M[—@ o + B:| (13)
C C [4 °

We then obtain from the Maxwell equation

47|'e p 1)

VX B =Ty, ] (14)

the equation

VX VX B+ 20 +-SB= i<30+2—"’c—‘*’“’>
mc e

47rp0
(15)
or, with
2me , _ _mc*
b=B+ — w, and A2 = —4‘n'poez
we have
MV XV X(b—b)+ (b—h)=0 (16)
and
Cu_ €
mov + —C_A — 9 pbo (17)

soatp = p;, the inner radius

S o+ o) = 55 [bo — Bled]  (18)

We introduce this into (14) and obtain

9

Eb Omre*

pa— _a_ = — mcf” Pi (b” - bl)

Plp=pi
so that
Y2 R AN | X |
o\v Uy _ fi (b /1 00
=57 (19)

% lp=p 2 o=

is the boundary condition to be imposed on the solution
of Eq. (16) at the inner surface. In a simply connected
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superconductor, we merely require that v be finite at
p = 0. The solution of (16) and (19) is (see Ref. 6)

b - b() - [b(Pe.rf) - bo]

For a thick-walled superconductor, this reduces to

b = by = [blocr) — bu] £ sinh [Pi = P] (21)

We now see that while the expression for the field b; is
the same as it is in London theory, namely,

b;, - b(] =0
the field in the wall in BSH theory is also given by

b = b,, whereas in the London theory, the field in the
wall is b = 0.

V. DISCUSSION

As we have seen, for the hollow cylinder, one of the
main differences between BSH theory and London theory
is that in BSH theory, the fluxoid is in general not
conserved. However, under the assumption that the field
of a hollow cylinder is itself cylindrically symmetric, we
found that the field trapped inside the bore of the cyl-
inder, as given by BSH theory, was the same as that
given by London theory. The complete trapping of the
flux in the bore followed from fluxoid conservation, which
(under the assumption of cylindrical symmetry) was
shown to hold in both theories. Also, the value of the
field trapped—the field that is required to be in the bore
when the system is in thermal equilibrium—is seen to be
the same in both theories. This latter result follows just
from the requirement that in equilibrium there be no
magnetic pressure drop across a superconductor.

Thus, the theories differ only in the field present inside
the superconducting material itself. In London theory,
the constraint—London’s first equation—requires a mag-
netic pressure drop from the outside to the inside of the
superconductor. In BSH theory, however, even such a
drop is absent. This difference expresses itself in the fact
that while in London theory it is only the average cur-
rent through the cross section of wall that must be zero,
in the BSH theory the current must be zero point by
point.

The reason for the difference in the equilibrium cur-
rent distribution for the two theories, at least as seen
from Eq. (1), is that in London theory, mv, + e/cA = Vx,
while in BSH theory, mv, + e/cA = Vx + u, where*
u = V X w, so that the London constraint as it appears
here is u = 0. The extra degree of freedom represented
by u always allows us to reach a lower minimum of the
free energy. The states represented by this minimum are
states in which the magnetic field is not excluded from
the superconductor.

Perhaps a word of explanation is in order regarding
the lower free energy of BSH theory and the “constraint”
that converts BSH theory into London theory. As a con-
straint, London’s first equation raises the free energy (or
at least never lowers it) beyond the value it has in BSH
theory. It is important to rcalize that this is only an
apparent raising, however. What we have done is not to
include the condensation energy (the pairing energy of
BCS theory) in the free energy; once we do this, the
London constraint ceases to be a constraint and becomes
merely a property of the state having the lowest free
energy.

#We express u as ¥ X w to make ¥ x unique. Then, in either

theory, x must vanish in a simply connected superconductor, and
in cither theory, x need not be single-valued in a multiply con-
nected superconductor.
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